Study on the new graph constructed by a commutative ring
author
Abstract:
Let R be a commutative ring and G(R) be a graph with vertices as proper andnon-trivial ideals of R. Two distinct vertices I and J are said to be adjacentif and only if I + J = R. In this paper we study a graph constructed froma subgraph G(R)Δ(R) of G(R) which consists of all ideals I of R such thatI Δ J(R), where J(R) denotes the Jacobson radical of R. In this paper westudy about the relation between the number of maximal ideal of R and thenumber of partite of graph G(R)4(R). Also we study on the structure of ringR by some properties of vertices of subgraph G(R)4(R). In another section,it is shown that under some conditions on the G(R), the ring R is Noetherianor Artinian. Finally we characterize clean rings and then study on diameterof this constructed graph.
similar resources
Some results on the complement of a new graph associated to a commutative ring
The rings considered in this article are commutative with identity which are not fields. Let R be a ring. A. Alilou, J. Amjadi and Sheikholeslami introduced and investigated a graph whose vertex set is the set of all nontrivial ideals of R and distinct vertices I, J are joined by an edge in this graph if and only if either ann(I)J = (0) or ann(J)I = (0). They called this graph as a new graph as...
full textA Note on a graph associated to a commutative ring
The rings considered in this article are commutative with identity. This article is motivated by the work on comaximal graphs of rings. In this article, with any ring $R$, we associate an undirected graph denoted by $G(R)$, whose vertex set is the set of all elements of $R$ and distinct vertices $x,y$ are joined by an edge in $G(R)$ if and only if $Rxcap Ry = Rxy$. In Section 2 of this articl...
full textA note on a graph related to the comaximal ideal graph of a commutative ring
The rings considered in this article are commutative with identity which admit at least two maximal ideals. This article is inspired by the work done on the comaximal ideal graph of a commutative ring. Let R be a ring. We associate an undirected graph to R denoted by mathcal{G}(R), whose vertex set is the set of all proper ideals I of R such that Inotsubseteq J(R), where J(R) is...
full textOn perfectness of dot product graph of a commutative ring
Let $A$ be a commutative ring with nonzero identity, and $1leq n
full textThe annihilator-inclusion Ideal graph of a commutative ring
Let R be a commutative ring with non-zero identity. The annihilator-inclusion ideal graph of R , denoted by ξR, is a graph whose vertex set is the of allnon-zero proper ideals of $R$ and two distinct vertices $I$ and $J$ are adjacentif and only if either Ann(I) ⊆ J or Ann(J) ⊆ I. In this paper, we investigate the basicproperties of the graph ξR. In particular, we showthat ξR is a connected grap...
full textThe sum-annihilating essential ideal graph of a commutative ring
Let $R$ be a commutative ring with identity. An ideal $I$ of a ring $R$is called an annihilating ideal if there exists $rin Rsetminus {0}$ such that $Ir=(0)$ and an ideal $I$ of$R$ is called an essential ideal if $I$ has non-zero intersectionwith every other non-zero ideal of $R$. Thesum-annihilating essential ideal graph of $R$, denoted by $mathcal{AE}_R$, isa graph whose vertex set is the set...
full textMy Resources
Journal title
volume 12 issue 1
pages 1- 9
publication date 2018-02-03
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023